Human Metapneumovirus

Molecular Biology and Diagnostic methods

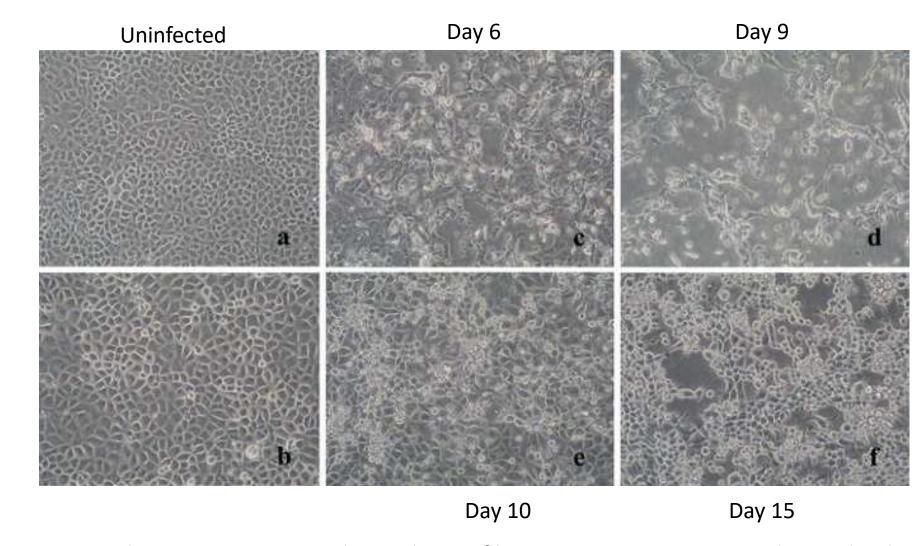
Dr. E Sreekumar Institute of Advanced Virology

A newly discovered human pneumovirus isolated from young children with respiratory tract disease

BERNADETTE G. VAN DEN HOOGEN¹, JAN C. DE JONG¹, JAN GROEN¹, THIJS KUIKEN¹, RONALD DE GROOT², RON A.M. FOUCHIER¹ & ALBERT D.M.E. OSTERHAUS¹

Departments of Virology and Pediatrics, Erasmus Medical Center, Rotterdam, the Netherlands Correspondence should be addressed to A.D.M.E.O.; email: osterhaus@viro.fgg.eur.nl

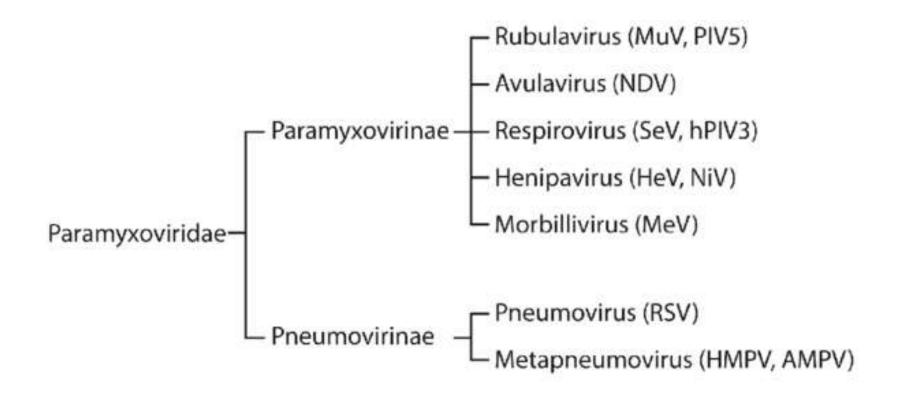
From 28 young children in the Netherlands, we isolated a paramyxovirus that was identified as a tentative new member of the *Metapneumovirus* genus based on virological data, sequence homology and gene constellation. Previously, avian pneumovirus was the sole member of this recently assigned genus, hence the provisional name for the newly discovered virus: human metapneumovirus. The clinical symptoms of the children from whom the virus was isolated were similar to those caused by human respiratory syncytial virus infection, ranging from upper respiratory tract disease to severe bronchiolitis and pneumonia. Serological studies showed that by the age of five years, virtually all children in the Netherlands have been exposed to human metapneumovirus and that the virus has been circulating in humans for at least 50 years.


The Paramyxovirinae and Pneumovirinae subfamilies of the Paramyxoviridae family include several major pathogens of humans and animals. The Pneumovirinae are taxonomically divided in the Pneumovirus and the Metapneumovirus genera. Human res-

mology and gene constellation, the viruses seemed to be a tentative new member of the *Metapneumovirus* genus that we have provisionally named human metapneumovirus (hMPV). Serological surveys showed that by the age of five years virtually

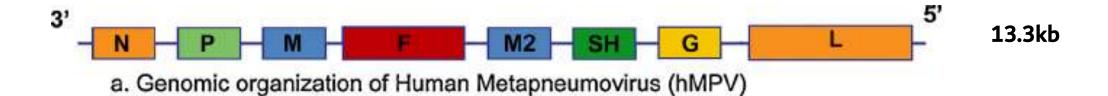
- CPE in cell cultures tertiary monkey kidney (tMK) cells VERO/A549
- cynomolgus macaques infectivity
- random arbitrarily primer PCR (RAP-PCR) detection
- Full genome sequencing

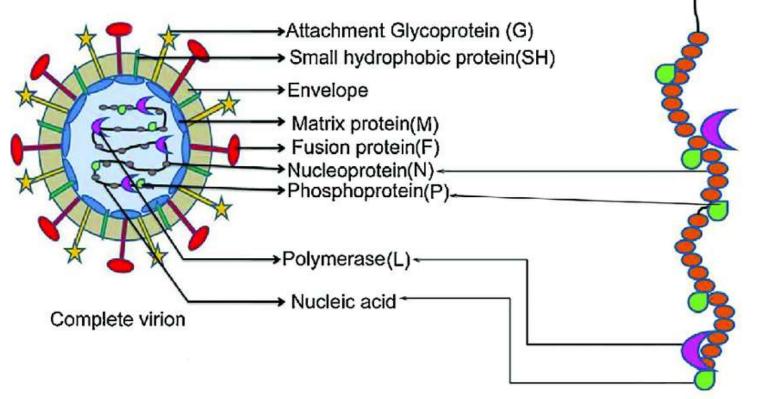
Metapneumovirus Isolation

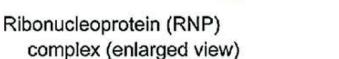

Li, Xy., Chen, Jy., Kong, M. *et al.* Prevalence of human metapneumovirus in hospitalized children with respiratory tract infections in Tianjin, China. *Arch Virol* **154**, 1831–1836 (2009)

VERO cells

LLC-MK2 cells

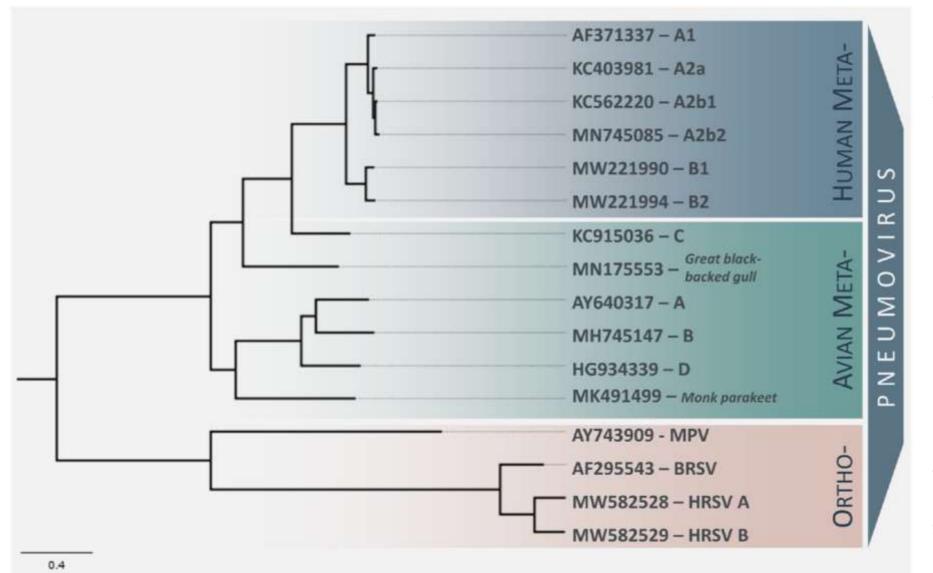

Paramyxoviridae- Metapneumovirus





Metapneumovirus

-ve sense RNA Genome



Paramyxoviridae- Metapneumovirus

Variant A2b strains display increased rates of virus transmission

No animal reservoirs

Small animal models (c57/BL6 or Balb/c mice Non-human primates

Jesse, S.T.; Ludlow, M.; Osterhaus, A.D.M.E. Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022, 14, 677

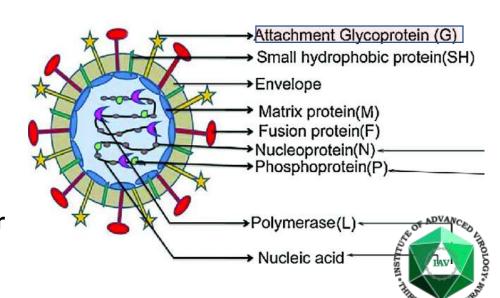
HMPV Pandemic Potential

HMPV G protein: Receptor binding protein

Displays the highest level of inter-strain diversity

Mean 63% aa identity between HMPV subgroups

HMPV Mutation rate


G gene 3.5×10^{-3} nucleotide substitution per site per year

F gene $7.1 - 8.5 \times 10^{-4}$ nucleotide substitution per site per year

N gene 9×10^{-4} nucleotide substitution per site per year

SARS Cov-2 Mutation Rate during initial pandemic time

Spike protein: 2.19×10^{-3} substitution per site per year

HMPV-Global scenario

- HMPV is found globally and has been identified on every continent.
- In temperate climates, HMPV circulates predominantly in late winter and spring.
- The peak of HMPV activity often coincides with or follows the peak of Respiratory Syncytial Virus (RSV) activity.
- Sub lineage A2b -prevalent worldwide for several years
- Prevalence of HMPV worldwide is estimated to be between 5 and 10%

HMPV-Indian Scenario

HMPV has been identified in India as a respiratory pathogen in 2004

Significant cause of respiratory illness in all age groups

HMPV activity peaks globally during winter and spring, in India, infections vary regionally and often coincide with the post-monsoon season.

Average prevalence of HMPV varies from 4-12%

Circulating lineages identified in India include B1, B2, A2b and A2c

Rao BL, Gandhe SS, Pawar SD, Arankalle VA, Shah SC, Kinikar AA. 2004. First Detection of Human Metapneum Children with Acute Respiratory Infection in India: a Preliminary Report. J Clin Microbiol 42:.

Laboratory Diagnosis

a. Genomic organization of Human Metapneumovirus (hMPV)

Table 1 Summary of HMDV molecular diagnostic approaches and their characteristics

Methods	Operation time	Limit of detection	Experimental cost	Characteristics
RT-PCR [24, 25]	3–5 h	1000 copies/reaction	Low	RT-PCR has been widely used for performing epidemiological investigation of HMPV, while which requires complex instruments and trained workers
RT-qPCR [27, 28]	1–3 h	10~100 copies/reaction	Low	RT-qPCR has been widely amplified in HMPV monitoring in clinical samples
LAMP [34, 35] Recombinase-aided amplification	~ 1.5 h	< 10 copies/reaction	High	Advantages: High sensitivity and specificity, rapid diagnosis with simple reaction procedure, and constant temperature Disadvantages: High requirements of primers, high false positive rate, and high cost
RAA [38] recombinase polymerase amplification	15~30 min	100 copies/reaction	High	Advantages: High sensitivity and specificity, and rapid diagnosis of virus infection Disadvantages: High cost and high positive rate
RT-RPA combined with CRISPR-Cas12a [45]	< 30 min	< 700 copies/reaction	High	Advantages: High sensitivity and specificity, and rapid diagnosis of virus infection Disadvantages: High cost and high positive rate
mNGS [48] Netagenomics	5~10 days	Not determined	High	Advantages: High sensitivity and specificity, and rapid diagnosis of unknown pathogens Disadvantages: High cost and time-consuming
Virus isolation [51]	3~4 days or more time	Not determined	High	Advantages: Figh Cost and time-consuming Advantages: The "gold standard" for pathogen detection Disadvantages: High cost and time-consuming, and low isolation rate, and requires complex instruments and trained workers

SL.No AETIOLOGY/PATHOGEN SPECIMEN ASSAY TYPE RESULT Enterovirus NASOPHARYNGEL SWAB Real Time PCR Negative 2 Hemophilus influenzae NASOPHARYNGEL SWAB Real Time PCR Negative 3 Human Adenovirus NASOPHARYNGEL SWAB Real Time PCR Negative 4 Human Bocavirus NASOPHARYNGEL SWAB Real Time PCR Negative 5 Human Metapneumovirus A/B NASOPHARYNGEL SWAB Real Time PCR POSITIVE Human Parechovirus NASOPHARYNGEL SWAB Real Time PCR Negative 7 Human Respiratory syncytial virus Real Time PCR NASOPHARYNGEL SWAB Negative 8 Human Rhinovirus NASOPHARYNGEL SWAB Real Time PCR Negative 9 Human coronavirus 229E NASOPHARYNGEL SWAB Real Time PCR Negative 10 Human coronavirus HKU1 NASOPHARYNGEL SWAB Real Time PCR. Negative 11 Human coronavirus NL63 NASOPHARYNGEL SWAB Real Time PCR Negative 12 Human coronavirus OC43 NASOPHARYNGEL SWAB Real Time PCR Negative Human parainfluenza virus -1 13 NASOPHARYNGEL SWAB Real Time PCR Negative 14 Human parainfluenza virus -2 NASOPHARYNGEL SWAB Real Time PCR Negative Human parainfluenza virus -3 15 NASOPHARYNGEL SWAB Real Time PCR Negative 16 Human parainfluenza virus -4 NASOPHARYNGEL SWAB Real Time PCR Negative 17 Influenza A Virus NASOPHARYNGEL SWAB Real Time PCR Negative 18 Influenza B virus NASOPHARYNGEL SWAB Real Time PCR Negative 19 Mycoplasma pneumoniae NASOPHARYNGEL SWAB Real Time PCR Negative 20 SARS CoV2 NASOPHARYNGEL SWAB Real Time PCR Negative 21 Staphylococcus aureus NASOPHARYNGEL SWAB Real Time PCR Negative 22 Streptococcus pneumoniae NASOPHARYNGEL SWAB Real Time PCR Negative Disclaimer: PCR done by institute of Advanced Virology is on Research mode. Please correlate the cases clinically.

Laboratory Diagnosis

In 2022, IAV started testing HMPV along with other respiratory viruses

Specimen: Nasopharyngeal swab and Throat swab

Method: Real Time RT-PCR

Target gene : G gene

Courtesy: Dr. Aswathyraj, Scientist C & In-charge, Molecular Diagnostic Facility, IAV

IAV – HMPV Diagnosis

YEAR	TOTAL SAMPLES TESTED	TOTAL POSITIVE CASES
2022	191	3
2023	380	1
2024	3888	8
2025	24	0

		HMPV CASES (n=12)
Clinical parameters		N (%)
Cough		11 (91.6%)
Coryza		10 (83.3%)
Breathlessness		8 (66.6%)
Headache		4 (33.3%)
Mechanical ventilation		3. (25%)
Altered sensorium		2 (16.6%)
Vomiting		1 (8.3%)

Age group (In Years)	HMPV CASES (n=12) N (%)
0-2	4 (33.3%)
2-5	2 (16.6%)
5-15	1 (8.3%)
15-50	1 (8.3%)
50-70	4 (33.3%)

